范自柱

发布日期:2024-06-03      浏览次数:3162

姓名:范自柱性别:
学历:博士研究生职称:教授
电话:13970993650Email:zzfan3@shiep.edu.cn
系所:计算机系办公地址:计电楼A510
个人简介:



范自柱,教授,博士生导师。2003年毕业于合肥工业大学计算机软件与理论专业获工学硕士学位,2014年毕业于哈尔滨工业大学计算机应用技术专业获工学博士学位。20159-20169月美国加州大学圣塔芭芭拉分校访问学者。

  主要研究方向为模式识别与机器学习理论及其在计算机视觉和智能电网等领域的应用。目前发表学术论文近百篇,其中SCI检索期刊论文40余篇,出版专著2部,先后有2篇论文入选ESI高被引目录。主持国家自然科学基金重大项目课题、面上项目等多项科研项目,中国自动化学会大数据专业委员会委员,华东交通大学学报编委。

研究方向:

理论方向:模式识别与机器学习,可解释性人工智能;

应用方向:计算机视觉,智能电网等。

主讲课程:


机器学习,人工智能,算法设计与分析等。

科研成果:

代表性论文

[1]      F. Xu, Y. Huang, H. Wang, Z. Fan*, A novel heterogeneous data classification approach combining gradient boosting decision trees and hybrid structure model, Pattern Recognition, https://doi.org/10.1016/ j.patcog. 2025.111614 (In press).

[2]      Z. Fan, L. Shi, Q. Liu, Z. Li and Z. Zhang, Discriminative Fisher Embedding Dictionary Transfer Learning for Object Recognition,  IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no.1, pp.64-78, 2023.

[3]      C. Xi, Z. Fan*, C. Peng, Q. Liu, H. Wang, Semi-Supervised Multiview Fuzzy Broad Learning, Information Sciences, vol.672, 120625, 2024.

[4]      C. Wei, F. Han, Z. Fan*, L. Shi, C. Peng, Efficient License Plate Recognition in Unconstrained Scenarios, Journal of Visual Communication and Image Representation, vol.104, 104314, 2024.

[5]      Z. Fan, Y. Huang, C. Xi, and Q. Liu. Multiview Adaptive K-Nearest Neighbor Classification,IEEE Transactions on Artificial Intelligence, 2023, DOI:10.1109/ TAI.2023.3296092

[6]      Z. Jiang, H. Wang*, G. Luo, Z. Fan, L. Xu, Pedestrian Intrusion Detection in Railway Station Based on Mirror Translation Attention and Feature Pooling Enhancement, IEEE Signal Processing Letters, vol.31, pp. 2730-2734, 2024.

[7]      Z. Fan, Y. Huang, C. Xi, C. Peng and S. WangSemi-supervised Fuzzy Broad Learning System based on Mean-Teacher Model, Pattern Analysis and Applications, Vol.27, DOI: 10.1007/s10044-024 -01217-8, 2024.

[8]      Z. Fan, L. Shi, C. Xi, H. Wang, S. Wang and G. WuReal Time Power Equipment Meter Recognition based on Deep Learning, IEEE Transactions on Instrumentation and Measurement, DOI: 10.1109/TIM.2022.3191709, 2022.

[9]      L. Shi, Z. Zhang, Z. Fan, C. Xi, Z. Li, G. Wu, Kernel Fisher Dictionary Transfer Learning, ACM Transactions on Knowledge Discovery from Data, Volume 17, Issue 8, pp 1–17, https://doi.org/10. 1145/3588575.

[10]   Q. Liu, Y. Zhang, X. Si, Z. Fan, DLVR-NWP: A Novel Data-Driven Bearing Degradation Model for RUL Estimation, IEEE Transactions on Instrumentation and Measurement, DOI.10.1109/TIM.2023. 3244839.

[11]   Q. Liu*, Y. Zhu, G. Wu and Z. Fan, Disturbance Robust Abnormality Diagnosis of Fused Magnesium Furnaces Using Deep Neural Networks, IEEE Transactions on Artificial Intelligence, Vol. 4, no. 4, pp. 669 - 678, 2023.

[12]   Q. Zhu, H Li, H Ye, Z Zhang, R Wang, Z. Fan, and D Zhang*, Incomplete Multi-Modal Brain Image Fusion for Epilepsy Classification,Information Sciences,Vol.582, pp. 316-333, 2022.  

[13]   Z. Fan, H. Zhang, Z. Zhang, G. Lu and Y. Zhang, A Survey of Crowd Counting and Density Estimation based on Convolutional Neural Network, Neurocomputing, vol. 472, 224-251, 2022.

[14]   W. Zhang*, X. Xue, X. Zheng, and Z. Fan, NMFLRR: Clustering scRNA-seq data by integrating non-negative matrix factorization with low rank representation, IEEE Journal of Biomedical and Health Informatics, pp. 2168-2194, 2021.

[15]   Z. Fan, and C Wei. Fast Kernel Sparse Representation Based Classification for Undersampling Problem in Face Recognition, Multimedia Tools and Applications, vol.79, no.11, pp. 7319-7337, 2020.

[16]   S. Wang, Z. Fan*, Z. Li, H. and C. Wei. An Effective Lunar Crater Recognition Algorithm Based on Convolutional Neural Network, Remote Sensing, vol.12, no.17, 2694, 2020.

[17]   Z. Fan, D. Zhang, X. Wang, Q. Zhuand Y. Wang. Virtual Dictionary based Kernel Sparse Representation for Face Recognition. Pattern Recognition, vol. 76, pp. 1-13, 2018.

[18]   Z. Fan, Y.Xu, M. Ni, X. Fang, and D. Zhang.Individualized Learning for Improving Kernel Fisher Discriminant Analysis. Pattern Recognition, vol.58, pp.100-109, 2016.

[19]   Z. Fan, Y. Xu*, W. Zuo,J.Yang, J. Tang, Z. Lai and D. Zhang. Modified Principal Component Analysis: An Integration of Multiple Similarity Subspace Models.IEEE Transaction on neural network and learning systems, vol.25, no. 8, pp.1538-1552, 2014.

[20]   Z. Fan, Y. Xu, and D. Zhang, Local linear discriminant analysis framework using sample neighbors,IEEE Transactions on Neural Networks, vol.22, no.7, pp.1119-1132, 2011.

[21]   Z. Fan, M. Ni, Q. Zhu, and E. Liu. Weighted Sparse Representation for Face Recognition. Neurocomputing,  vol. 151, pp. 304-309, 2015.

[22]   Z. Fan, M. Ni, Q. Zhu and C. Sun.L0-norm Sparse Representation Based on Modified Genetic Algorithm, Journal of Visual Communication and Image Representation, Vol. 28, pp.15-20, 2015.

[23]   Z. Fan and M. Ni, Individualized Boosting Learning for Classification, International Journal for Light and Electron Optics, vol. 126, no. 24, pp.5733–5739, 2015.

[24]   L. Xu,  Z. Jiang, X. Han, H. Wang, Z. Fan*, Real-Time Text Detection with Multi-level Feature Fusion and Pixel Clustering, The 7th Chinese Conference on Pattern Recognition and Computer Vision ( PRCV), Xinjiang, 2024

[25]   王辉, 黄宇廷, 夏玉婷, 范自柱*, 罗国亮, 杨辉,基于视觉属性的多模态可解释图像分类方法,自动化学报51(2)1-12, 2025

[26]   石林瑞, 黄祎婧, 符进武, 郭心悦范自柱*. 特征空间中基于半遗传稀疏表示的图像识别. 智能科学与技术学报, 3(3): 359-369, 2021.

 

专著:

[1]      范自柱,新型特征抽取算法研究,中国科学技术大学出版社,合肥,2016.

[2]      徐勇,范自柱,张大鹏. 基于稀疏算法的人脸识别,国防工业出版社,北京,2014.

国家发明专利:

[1]      王辉,姜朱丰,华姝雅,李欣怡,范自柱,杨辉. 一种多模态图像融合方法、装置及设备,专利号: ZL 2023 1 0638962.9, 2023.

[2]      王辉,韩星宇,范自柱,杨辉. 基于Transformer的孪生多模态目标跟踪方法, 专利号:202211376018.22023.

[3]      徐峰,王辉,黄宇廷,范自柱. 一种基于混合结构模型的电熔镁炉工况诊断方法,专利号:ZL 2024 10049997.32024.

[4]      徐峰,王辉,王帆,唐孝坤,范自柱. 一种电熔镁炉故障诊断方法、设备及介质,专利号:ZL202410911393.52024.

 

荣誉奖项:

[1]  2020江西省高校井冈学者特聘教授

[2]  2018江西省自然科学奖二等奖,新型特征抽取算法应用研究,排名第一

[3]  2014黑龙江省自然科学奖二等奖,生物特征识别中的特征抽取与特征表达方法排名第四


科研项目

[1]      国家自然科学基金重大项目课题:复杂环境下重大耗能设备运行工况智能识别方法,437万元,主持完成

[2]      南方电网网络空间安全联合实验室开放课题:AI测评的多场景测试数据生成技术研究,20万,主持在研

[3]      国家自然科学基金面上项目:特征空间中的稀疏表示及其分类研究,80万,主持完成

[4]      国家自然科学基金地区项目:大规模数据的个性化分类学习45万,主持完成

[5]      江西省自然科学基金重点项目:小样本深度核稀疏网络及其在电力设备图像中的检测与识别研究20万,主持完成